
Problem 1 

 

1.1 Create a scatterplot of this data with calories on the x-axis and carbohydrate grams on 

the y-axis, and describe the relationship you see. 

 

Code: 

> if(!require('openintro')) { 

+ install.packages('openintro') 

+ library(openintro) 

+ } 

> if(!require('lattice')) { 

+ install.packages('lattice') 

+ library(lattice) 

+ } 

> head(starbucksDF) 

plot(starbucks$calories,starbucks$carb) 

As you can see here, as the calories increase, the carbohydrates increase. I predict for 

this reason, there will be a positive correlation between calories and carbohydrates. 

 

 

 

 

 

 

 

1.2 In the scatterplot you made, what is the explanatory variable? What is the response 

variable? Why might you want to construct the problem in this way? 



 

The explanatory variable in this scatterplot is the calories because it is the dependent variable 

(x). The response variable is the carbohydrates (y-axis) because it is responding to the change 

in calories. We are using the calories (the explanatory variable) to predict what the 

carbohydrates will be (the response variable). 

 

 

1.3 Fit a simple linear regression to this data, with carbohydrate grams as the dependent 

variable and the calories as the explanatory variable. Use the lm() function. 

 

Code: 

plot(starbucks$calories,starbucks$carb) 

starbucks.lm <- lm(starbucksDF$carb ~ starbucksDF$calories, data = starbucks) 

summary(starbucks.lm) 

# with(starbucksDF, plot(starbucksDF$calories, starbucksDF$carb)) with(starbucksDF, 

plot(starbucksDF$calories, starbucksDF$carb, xlab='Calories', ylab='Carbs', 

main='Starbucks Calorie & Carb Linear Regression')) abline(starbucks.lm,col="pink") 

 



 

 

 
 

 

 

 

1.4 Write the fitted model out using mathematical notation. Interpret the slope and the 

intercept parameters. 

 

 

Fitted model using mathematical notation: 

y= 8.94 + 0.106x 

 

- Slope interpretation: For every additional calorie, carbohydrates 

increase by .106 on Starbucks’ menu. 

- Intercept interpretation: When there are 0 calories, the expected value of 

carbohydrates in Starbucks’ menu is 8.94. However, it’s important to note that the 

standard error is 4.76. 

 

1.5 Find and interpret the value of R2 for this model. 

 

Multiple R-squared: 0.4556, Adjusted R-squared: 0.4484 

 

Because R2 measures how close each data point fits to the regression line. R2 usually gives one a 

good understanding on how “good of a prediction” your regression line is. It also shows us the 

account of variation in y, in this case the amount of variation in carbohydrates, that is accounted 

for in the regression. In this case, 44.8% of the variation in carbohydrates is accounted for by its 

regression on calories. 



 

1.6 Create a residual plot. The ggplot2 function fortify can help a lot with this. Describe 

what you see in the residual plot. Does the model look like a good fit? 

 

Code: 

# with(starbucksDF, plot(starbucksDF$calories, starbucksDF$carb)) with(starbucksDF, 

plot(starbucksDF$calories, starbucksDF$carb, xlab='Calories', ylab='Carbs', 

main='Starbucks Calorie & Carb Linear Regression')) abline(starbucks.lm,col="blue") 

starbucks.res = resid(starbucks.lm) 

plot(starbucksDF$calories, starbucks.res, 

ylab="Residuals", xlab="Calories", 

main="Starbucks Calories Residuals") 

abline(0, 0) 

 

 

 

 

It’s clear within this residual plot that there is no real symmetrical similarity between the 

residuals and the plotting shows a large difference between the regression line and the actual 

data point. Additionally, one can observe that as the calories increase, the accuracy between the 

carbs predictions becomes less and less accurate (this can be seen with the data points getting 

farther and farther away from the line). This indicates that the regression model above is not as 

accurate as one would like it to be. 

 

Problem 2 



2.1 Convert the Eth, Sex, and Lrn variables to binary variables. One way to do this is with 

the function ifelse(). You should construct them so that 

 

1. Eth = 1 if the student is not aboriginal and Eth = 0 if the student is 

aboriginal; 

2. Sex = 1 if the student is male and Sex = 0 if the student is female; 

3. Lrn = 1 if the student is a slow learner and Lrn = 0 is the student is an 

average learner. 

 

Code: 

install.packages("tidyverse") 

library(tidyverse) 

library(tidyverse) 

newdata <- data_frame(Eth = c(1,1,1,0,0), Sex = 

c(0,1,0,1,0), 

Lrn = c(0,0,1,1,0)) 

data("absenteeism") 

head(absenteeism) 

 

absenteeism <- absenteeism %>% 

mutate(eth = ifelse(eth == "N", 1, 0), 

sex = ifelse(sex == "M", 1, 0), 

lrn= ifelse(lrn == "SL", 1, 0)) 

 

 

2.2 Fit a linear model to the data with Days as the dependent variable and the three 

variables mentioned in (1) as explanatory variables. 

 

Code: 

absenteeism.lm <- lm(absenteeism$days ~ absenteeism$eth + absenteeism$sex + 

absenteeism$lrn, data = absenteeism) 

summary(absenteeism.lm) 



 

2.3 Write the fitted model out using mathematical notation. Interpret all of the fitted 

values in context. 

 

 

2.3 

 

Mathematical equation: 

Y= 18.932 - 9.112x1 + 3.104 x2 + 2.154 x3 

 

x1= eth 

x2= sex 

x3= lrn 

 

For those that do come from Australia (are aboriginal), who are women, and are average 

learners, these students are expected to miss an average of 18.392 days of school. On the 

contrary, if everything is on the opposite end (students are from Australia, are males, and are 

slow learners), these students are expected to miss around 14 days of school. 

 

2.4  
 

Intercept- 18.392 



Multiple R-squared:  0.08933, Adjusted R-squared:  0.07009 

 

As described above, the intercept describes how many days would be missed if all X1, X2, and 

X3 variables were 0 (aka are not aboriginal, female, and average learners), the days missed 

would be 18.392. Additionally, 7.009% of the variance in the school days missed can be 

explained by the multiple linear regression model. 

 

2.5 Create a residual plot. Describe what you see in the residual plot. Does the model look 

like a good fit? 

 

dat <- fortify(model) 

ggplot(data = dat) + 

geom_hline(yintercept = 0, color = "green", size = 3) + 

geom_point(aes(x = absenteeism$days , y = .resid), size = 3, color = "purple") + labs(x = 

"# of days missed", y = "Residual", title = "Residual plot: missing school") 

 

 

 

 



 

As one can see, as the days at school that are missed increase, the residual value and the 

difference between the regression line (predicted value) and actual data points continue to 

become larger and larger, and farther and farther away from the line. This indicates that this 

multiple linear regression model is not accurate/reliable and that we need to reconsider and do 

further research on what is causing these big changes. 

 

 

2.6 Below is some data on new children in the school system. Predict the number of days 

each student will be absent, and display these predictions with the new data in a table. 

 

library(tidyverse) 

newdata <- data_frame(Eth = c(1,1,1,0,0), 

Sex = c(0,1,0,1,0), 

Lrn = c(0,0,1,1,0)) 

 

Code: 

 

newdata <- data_frame(eth = c(1,1,1,0,0), 

sex = c(0,1,0,1,0), 

lrn = c(0,0,1,1,0)) 

newdata <- newdata %>% 

mutate(Days_Missed = predict(model, newdata = newdata)) 

view(newdata) 

 

 

 

 



Problem 3 

 

3.1 Each row of the data represents a different shuttle mission. Examine these data and 

describe what you observe with respect to the relationship between temperatures and 

damaged O-rings. 

 

 

As one can see in the above table, the most damage occurs at 53 degrees whereas, anything 

above 63 degrees has no damage at all. 

 

3.3 Using orings2, fit a logistic regression to the data using the glm function. 

 

Code: 

 

fit <- glm(fail ~ temp, data=orings2, family='binomial') 

summary(fit) 

 

Call: 

glm(formula = fail ~ temp, family = "binomial", data = orings2) 

 

Deviance Residuals: 

Min 1Q   Median 3Q Max 

-1.2646 -0.3395 -0.2472 -0.1299 3.0216 

 

Coefficients: 

Estimate Std. Error z value Pr(>|z|) (Intercept) 

11.66299 3.29616 3.538 0.000403 *** 

temp -0.21623 0.05318 -4.066 4.77e-05 *** 



--- 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 76.745 on 137 degrees of freedom 

Residual deviance: 54.759 on 136 degrees of freedom AIC: 

58.759 

 

 

Number of Fisher Scoring iterations: 6 

 

3.4 Write out the logistic model using the point estimates of the model parameters. 

 

Logistical model 

 

P = 11.66 - .021x 

 

P = the probability of the rocket getting damaged 

 

3.5 Interpret the coefficient for temperature: How does an increase of the temperature by 

1 degree affect the odds that the O-ring in the shuttle will be damages? 

 

 

For every 1 unit increase in a degree in temperature, the log(odds of th oring getting 

damaged) decreases by 21%. 

 

3.6 After the Challenger Explosion in January of 1986, an investigation was done to 

determine the cause. The investigation found that the explosion was caused by the failure of 

the O-rings due to the low temperature during the shuttle launch. Based on the model, do 

you think the investigation was correct? Explain. 

 

 

Yes I think that it is certainly possible that the Challenger rocket was extremely damaged 

and failed because of low temperature. As one can observe in the logistic regression, the 

likelihood of a rocket failing is much higher when there is lower temperature, therefore, the 

conclusion that the Challenger failed because of lower temperature is supported by this 

logistic regression. 



3.7 Predict the probability of a damaged O-ring for each temperature value from 53-81 (i.e. 

53:81). Create a plot showing the observed data (in orings2) as points (x= temperature, y = fail) 

and draw a line through the predicted probabilities at each temperature value from 53-81. 

Describe what you see in the plot. 

 

 

Code: 

 

 

 

In the figure above, one can see that once again as mentioned earlier, as the temperature 

increases, the probability of the failure becomes to be at around 0%. On the other hand, in the 50 

degree Fahrenheit range, the probability of failure is a little bit above 50% whereas everything 

above near the higher 60 degree range has close to a 0% chance of failing. 

 

My R-Script:  

 

knitr::opts_chunk$set(echo = TRUE) 

 

# Clear the console 

cat("\014") 

if(!require('openintro')) { 

  install.packages('openintro') 

  library(openintro) 

} 



if(!require('lattice')) { 

  install.packages('lattice') 

  library(lattice) 

} 

starbucksDF <- starbucks 

 

head(starbucksDF) 

 

plot(starbucks$calories,starbucks$carb) 

starbucks.lm <- lm(starbucksDF$carb ~ starbucksDF$calories, data = starbucks)  

summary(starbucks.lm) 

# with(starbucksDF, plot(starbucksDF$calories, starbucksDF$carb)) 

with(starbucksDF, plot(starbucksDF$calories, starbucksDF$carb, xlab='Calories', ylab='Carbs', 

main='Starbucks Calorie & Carb Linear Regression')) 

abline(starbucks.lm,col="pink") 

 

starbucks.res = resid(starbucks.lm) 

plot(starbucksDF$calories, starbucks.res,  

     ylab="Residuals", xlab="Calories",  

     main="Starbucks Calories Residuals")  

abline(0, 0) 

 

data("absenteeism") 

head(absenteeism) 

 

install.packages("dplyr") 

library(dplyr) 

absenteeism <- absenteeism %>% 

  mutate(eth = ifelse(eth == "N", 1, 0),  

         sex = ifelse(sex == "M", 1, 0),  

         lrn = ifelse(lrn == "SL", 1, 0)) 

 

model <- lm(days ~ eth + sex + lrn , data = absenteeism) 

summary(model) 

 

 

dat <- fortify(model) 

ggplot(data = dat) +  

  geom_hline(yintercept = 0, color = "green", size = 3) +  

  geom_point(aes(x = absenteeism$days , y = .resid), size = 3, color = "purple") +  

  labs(x = "# of days missed", y = "Residual", title = "Residual plot: missing school") 

 

newdata <- tibble(eth = c(1,1,1,0,0), 

                      sex = c(0,1,0,1,0), 

                      lrn = c(0,0,1,1,0))  



newdata <- newdata %>%  

  mutate(Days_Missed = predict(model, newdata = newdata)) 

View(newdata) 

 

 

knitr::opts_chunk$set(echo = TRUE) 

 

# Clear the console 

cat("\014") 

if(!require('openintro')) { 

  install.packages('openintro') 

  library(openintro) 

} 

if(!require('lattice')) { 

  install.packages('lattice') 

  library(lattice)  

} 

 

 

data("orings") 

data.frame(orings) 

head(orings) 

 

library(openintro) 

data("orings") 

orings2 <- NULL 

for(i in 1:nrow(orings)){ 

  new <- data.frame(temp = orings$temp[i], # for each row in orings, 

                    fail = rep(c(1,0), c(orings$damage[i], # create 6 new rows: 

                                         6-orings$damage[i]))) # 1 for each launch 

  orings2 <- rbind(orings2, new) 

} 

 

fit <- glm(fail ~ temp, data=orings2, family='binomial') 

summary(fit) 

 

 

install.packages("ggplot2") 

install.packages("colorspace") 

library(ggplot2) 

install.packages("tidyverse") 

 

 

install.packages("remotes") 

remotes::install_github("CSAFE-ISU/csafethemes") 



library(dplyr) 

newdata <- data.frame(temp = 53:81) 

newdata <- newdata %>%  

  mutate(pred_prob = predict(fit, newdata = newdata, type = "response")) 

ggplot(data = orings2) +  

  geom_line(data = newdata, aes(x= temp , y= pred_prob), color = "purple",  

            size = 1.5) +  

  geom_point(aes(x = temp, y = fail), size = 2.5, color = "pink", alpha = .3) +  

  theme_classic() +  

  labs(x = "temperature", y = "probability of damaged oring", 

       title = "rocket failure probabilities") +  

  theme(plot.title = element_text(size = rel(.5)))  
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